Feedback, both Fast and Slow: How the Retina Deals with Redundancy in Space and Time
نویسنده
چکیده
By the time visual information leaves the retina for the brain, it has undergone several rounds of processing. Most prominently, that information has been filtered to amplify differences in contrast, between either two points in space or two points in time. The initial step in that amplification is carried out by horizontal cells, whose job is not only to receive signals from a group of adjacent photoreceptor cells (rods or cones) but also to send inhibitory feedback signals back to the photoreceptors, turning down the weakest outputs and allowing only the strongest to get through. This much has been known for several decades, but the cell physiological details of the feedback mechanism have been controversial. Part of the puzzle has been the paradoxical requirement for both very fast feedback, needed to highlight spatial differences, and slower feedback, needed to process temporal ones. In this issue of PLOS Biology, Rozan Vroman, Maarten Kamermans, and colleagues resolve this apparent paradox: they show that horizontal cells in the goldfish retina employ two simultaneous feedback mechanisms, the slower of which relies on a newly described mechanism, creating an extracellular buffer by secreting and hydrolyzing ATP. Horizontal cells affect the activity of cone cells by changing the rate of flow of positively charged calcium ions from the extracellular space through calcium channels into the cone cell. The authors measured that current within individual cone–horizontal cell synapses, and found that the curve reflecting the current change was best described as the sum of two exponential functions, one representing an initial fast increase and the other a slower one. The fast component was very fast indeed, inconsistent with the inevitable delay imposed when cells are separated by a synaptic gap. Instead, the authors show that connexin hemichannels on the horizontal cell membrane were involved. These channels allowed current to flow into the horizontal cell, increasing the negative charge of the intercellular space and increasing the flow of calcium into the cone cell, locally depolarizing it. This direct (‘‘ephaptic’’) connection makes the synapse among the fastest of all known inhibitory synapses. But it was the slow component that held the most surprises. The authors noted that
منابع مشابه
KINETIC STUDY OF TRR CORE IN FUEL CONVERSION FROM HEU TO LEU
In the conversion of fuel in the Tehran Research Reactor core from Highly- Enriched Uraniutn to Low-Enriched Uranium fuel neutronics analysis, thermal hydraulic calculations and kinetic performance of the core have to be studied. In this study, static and dynamic core performance for HEU and LEU fuels were investigated. In static conditions, two groups of neutron flux distributions in axia...
متن کاملSpeed Up, Slow Down or Both? Investigating the Contemporary Cities
Speed as a crucial phenomenon of modernism affects individual and collective life of human being and changes the traits of the places people live in. Increasing speed is the demand of the modern era, though on the other side in recent years there is a contrary incline towards slowing down different aspects of life. In view of this, the dualities in between social features of Speed up and slow d...
متن کاملModified particle swarm optimization algorithm to solve location problems on urban transportation networks (Case study: Locating traffic police kiosks)
Nowadays, traffic congestion is a big problem in metropolises all around the world. Traffic problems rise with the rise of population and slow growth of urban transportation systems. Car accidents or population concentration in particular places due to urban events can cause traffic congestions. Such traffic problems require the direct involvement of the traffic police, and it is urgent for the...
متن کاملThe Effect of Intensive Endurance Activity on Myocyte Enhancer Factor 2C Gene Expression of Slow and Fast Twitch Muscles in Male Wistar Rats: An Experimental Study
Background and Objectives: Myocyte enhancer factor 2c activates the genes of the slow-twitch muscle, the muscle which plays role in endurance activity. Therefore, the aim of this study was to evaluate the effect of a program of intensive endurance activity on MEF2c gene expression in fast and slow twitch skeletal muscles in wistar rats. Materials and Methods: In this experimental study, 14 mal...
متن کاملRole of slow pathway after nodal fast pathway ablation on the basic and rate- dependent properties of the isolated rabbit atrioventricularNode
Introduction : The aim of this study is to obtain new insight into possible relation between functional properties of slow concealed pathway and rate-dependent properties of AV-node. Methods : Rate-dependent nodal properties of recovery, facilitation, and fatigue were characterized by stimulation protocols in one groups of (N=7) isolated superfused AV-Nodal rabbits. Small miniature lesions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2014